Math 275D Lecture 6 Notes

Daniel Raban

October 9, 2019

1 Markov Property of Brownian Motion

1.1 Proof of the Markov property of Brownian motion

We want to prove the following.

Lemma 1.1 (Markov property of Brownian motion). Let $Y : C(\mathbb{R}) \to [-M, M]$ be a functional, and let θ_s be the shift by s. Then

$$\mathbb{E}_x[Y \circ \theta_s \mid \mathcal{F}_s^+] = \mathbb{E}_{B(s)}[Y].$$

Recall the following lemma:

Theorem 1.1 (Monotone class argument). Let \mathcal{A} be a π -system, and let \mathcal{H} be a collection of functions that satisfies:

- 1. If $A \in \mathcal{A}$, then $1_A \in \mathcal{H}$.
- 2. If $f, g \in \mathcal{H}$, then $f + g \in \mathcal{H}$.
- 3. If $f_n \uparrow f$ with $0 \leq f_n \in \mathcal{H}$, then $f \in \mathcal{H}$.

Then \mathcal{H} has all bounded measurable functions with respect to $\sigma(\mathcal{A})$.

Now on to the proof of the Markov property.

Proof. We need to show that for any $A \in \mathcal{F}_s^+$ and for any Y, $\mathbb{E}[\mathbb{1}_A(Y \circ \theta_s)] = \mathbb{E}[\mathbb{1}_A \mathbb{E}_{B(s)}[Y]]$. By the monotone class argument, we only need to prove this for Ys of the form $Y = \prod_{k=1}^n f_k(B(t_k))$; here, \mathcal{A} is the algebra generated by the B(t)s. Then

$$Y \circ \theta_s(B(\cdot)) = \prod_{k=1}^n f_k(B(t_k + s)).$$

The point of this trick now is that the difference between \mathcal{F}_s^0 and \mathcal{F}_s^+ doesn't matter because there is a gap between s and $s + t_1$.

For this Y, let's prove that that the result holds for any $A \in \mathcal{F}^0_{S+\delta}$ with $\delta \leq t_1/2$. So we want to show that

$$\mathbb{E}[Y \circ \theta_s \mid \mathcal{F}^0_{s+\delta}] = \varphi^Y_{B(s+\delta)}$$

for some φ . We only need to show that this holds for $A \in \mathcal{A}_{\delta}$, where $\mathcal{A}_{\delta} = \{\bigcap_{k=1}^{n} \{B(a_k) \in R_k\} : a_k \in [0, s + \delta], R_k \text{ is Borel}\}$, because $\sigma(\mathcal{A}_{\delta}) = \mathcal{F}_{s+\delta}^0$. So we can calculate

$$\mathbb{E}[1_{A}(Y \circ \theta_{s})] = \mathbb{E}\left[\prod_{k=1}^{n} 1_{\{B(a_{k})\in R_{k}\}} \cdot \prod_{k=1}^{n} f_{k}(B(t_{k}+s))]\right]$$

$$= \int_{R_{1}} p_{a_{1}}(0,\hat{a}_{1}) d\hat{a}_{1} \int_{R_{2}} p_{a_{2}-a_{1}}(\hat{a}_{1},\hat{a}_{2}) d\hat{a}_{2} \cdots \int_{R_{n}} p_{a_{n}-a_{n-1}}(\hat{a}_{n-1},\hat{a}_{n}) d\hat{a}_{n}$$

$$\cdot \int_{R} p_{s+\delta-a_{n}}(\hat{a}_{n},\xi) d\xi \int_{R} p_{t-\delta}(\xi,\hat{t}_{1}) f_{1}(\hat{t}_{1}) dt_{1} \cdot \int_{R} p_{t_{2}-t_{1}}(\hat{t}_{1},\hat{t}_{2}) f_{2}(\hat{t}_{2}) d\hat{t}_{2}$$

$$\cdots \int_{R} p_{t_{m}-t_{m-1}}(\hat{t}_{m-1},\hat{t}_{m}) f_{m}(\hat{t}_{m}) d\hat{t}_{m},$$

where $p_t(x, y)$ is the pdf of a N(0, t) random variable, $p_t(x, y) = \frac{1}{\sqrt{2\pi t}} e^{-|y-x|^2/2t}$. These integrals should be nested (evaluate them in reverse order).

$$= \mathbb{E}[\mathbb{1}_A \varphi_{s+\delta}^Y],$$

where $\varphi_{s+\delta}^Y \in \mathcal{F}_{s+\delta}^0$. In particular, this depends only on $B(s+\delta)$. If we send $\delta \downarrow 0$, this φ has a limit. This limit is exactly $\varphi^Y(B_s) = \mathbb{E}_{B(s)}[Y]$.

1.2 Events at 0 and ∞ are trivial

Corollary 1.1. \mathcal{F}_0^+ is trivial.

Proof.
$$\mathcal{F}_0^+$$
 agrees with $\mathcal{F}_0^0 \mod \text{null sets}$, but \mathcal{F}_0^0 is trivial.

Corollary 1.2. Events depending on B(t) as $t \to \infty$ are trivial.

Proof. Define Y(t) = tB(1/t). Then Y(t) is a Brownian motion because they are both have finite dimensional distributions which are Gaussian vectors that agree. But events with $t \to \infty$ are the same as events for B(s) with $s \downarrow 0$. These are trivial.